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a b s t r a c t 

High-level pose features (HLPF) have been shown to be very effective and efficient for action recognition. 

However, motion information has not been sufficiently mined in HLPF. In addition, the position relations 

of joints are limited with respect to orientation, distance and angle in HLPF. To tackle these problems, we 

propose a set of comprehensive features, termed joints kinetic and relational features (JKRF), for action 

recognition. Specifically, for each single joint, we propose a group of kinetic features to describe its veloc- 

ity, speed, acceleration, acceleration rate, angular velocity, angular acceleration, kinetic energy, potential 

energy and total energy. For each joint pair, we propose a set of corresponding features to describe the 

correlation relations of velocity, acceleration, angular velocity, angular acceleration and energy change 

between joints. Additionally, we propose a set of corresponding features to encode distance relations in 

the horizontal, vertical, orientation cosine, orientation sine, eigenvector and link path directions. For each 

joint triplet, we also present a joint vector inner product feature, a joint vector cosine similarity feature 

and an area perimeter rate feature to describe their geometrical relations. We evaluate our JKRF using 

three datasets, and the experimental results show that JKRF consistently outperform state-of-the-art ac- 

tion recognition methods. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

With a wide range of applications, such as intelligent surveil-

lance, human-computer interaction, sports video analysis and

video retrieval, action recognition [1–4] and pose estimation [5–7]

are regarded as fundamental problems in the field of computer

vision. Although these tasks have different goals, action recogni-

tion often uses the result of pose estimation as its input. However,

pose estimation is still a difficult task, where errors often arise

from small parts of the human body, because of large variation and

blending with complex backgrounds. For this reason, recent action

recognition studies have begun to investigate the performance of

features under the condition that pose estimation is perfect. Thus,

annotated joints are used to study the action recognition problem.

Based on the given pose information, Jhuang et al. [1] pro-

posed a set of human pose-based features, termed high-level pose

features (HLPF). High-level pose features greatly outperform low-

level features (e.g., dense trajectory [8] ) and mid-level features

(e.g., dense trajectory using ground truth optical flow and segmen-

tation) on joint-annotated datasets, such as the joint-annotated

human motion data base (JHMDB) [1] and the sub-JHMDB [1] .
∗ Corresponding author. 
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urthermore, HLPF are very efficient since the features are ex-

racted based on the positions ( x and y coordinates) of joints. 

However, HLPF also have their limitations. Three features in

LPF describe single joint information: normalized joint positions,

he trajectories in Cartesian coordinates and the trajectories in po-

ar coordinates. Four features in HLPF describe pairwise joints re-

ations: distance relation, orientation relation and the trajectories

f these relations. The other two features, i.e., the angle relation

nd its trajectory, describe triplet joints relations. Although HLPF

erform well on the abovementioned datasets, the motion infor-

ation of each joint is not mined sufficiently, and the position re-

ations of the joints are limited in distance, orientation and angle

n HLPF. To tackle these problems in HLPF, we construct a set of

inetic and relational features that take motion information, cor-

elation relations, distance relations and geometrical relations into

onsideration, as shown in Fig. 1 . 

First, motion is an important source of information for classi-

ying human actions [2,8,9] . To capture the motion information,

huang et al. [1] used trajectory features to describe the velocity

f each joint or the changes in these relations. To further describe

he acceleration of each joint, we need to calculate the trajectories

f the trajectory features. In addition, to describe the magnitude of

he velocity vector, we build the speed feature. In the same man-

er, we build the acceleration rate feature to denote the magni-

ude of the acceleration vector. Since each joint of the human body

http://dx.doi.org/10.1016/j.sigpro.2017.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.08.005&domain=pdf
mailto:xinmei@ustc.edu.cn
mailto:xinmei@ustc.edu.cn
mailto:jyfan91@mail.ustc.edu.cn
http://dx.doi.org/10.1016/j.sigpro.2017.08.005
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Fig. 1. Joints kinetic and relational features. 
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lways revolves around its adjacent ancestor joint (e.g., the hand

evolves around the elbow when a person is waving), we use the

atio of the velocity to the length of the limb to describe the an-

ular velocity. Similarly, we calculate the difference in angular ve-

ocity to describe the angular acceleration. Rather than the mass of

he joint, we simply use the square of the velocity to denote the ki-

etic energy of the joint. Thus, based on the velocity, we construct

he acceleration, speed, acceleration rate, angular velocity, angular

cceleration and kinetic energy features. In addition, from the per-

pective of energy, we use the vertical positions of the joints to

onstruct the potential energy feature and combine it with the ki-

etic features to construct the total energy feature. These features

onsist of kinetic features and sufficiently mine the motion infor-

ation of each single joint. 

Second, when a person performs a particular action, there is

nvariably a kinetic correlation between each pair of joints. For ex-

mple, when a man claps, his two hands always move in opposite

irections. To describe the correlation between each pair of joints,

e calculate the cosine similarity of the velocity, the acceleration,

he angular velocity and the angular acceleration of the joint pair.

n this way, the corresponding correlation relational features are

onstructed. In addition, we hold the view that for a particular ac-

ion, energy from each joint will change due to the motion of other

oints. For different actions, the energy changes of different joints

ary. Thus, we calculate the inner product of the velocity of one

oint relative to the other and the relative acceleration to repre-

ent the energy flow from one joint to the other. This process is

ased on the following: first, velocity represents the displacement

er unit time; second, acceleration represents the net force per

nit mass. Therefore, the product can represent the energy flow

rom one joint to the other with unit mass per unit time. Accord-

ngly, we use this feature to describe the energy change correlation

elation between joints. 

Third, for each pair of joints, the discriminative power of dis-

ance relation features and orientation relation features in HLPF

1] is not strong enough. Specifically, the distance between the ma-
ority of pairs of joints in the human body varies irregularly and

s closely related to the behavior habit of the actor. As a conse-

uence, the intra-class variance of the distance relations feature is

ot small enough. This conclusion also applies to the orientation

elations feature. When different people perform the same action,

heir action amplitudes are usually different. Thus, the orientation

f a pair of joints may vary in a wide range for the same action.

oreover, the viewpoint also greatly affects the orientation. There-

ore, the intra-class variance of the orientation relations feature is

lso not small enough. In other words, the discriminative power

f these two features is not strong enough. We believe that the

rimary reason behind this conclusion is that the discriminative

ower required for a human to recognize actions differs for differ-

nt orientations. This point is not well considered in constructing

hese two features. In detail, a large proportion of human actions

re accomplished under the condition that the body of the actor

s nearly vertical with respect to the ground and that the limbs

re nearly horizontal or vertical with respect to the ground. This

eans that the discriminative power in the horizontal orientation

nd vertical orientation is much stronger. Therefore, we present

eatures to describe horizontal and vertical distance relations be-

ween pairs of joints. However, in most cases, the body cannot be

trictly vertical with respect to the ground. Therefore, we calculate

he sine function value and the cosine function value of the orien-

ation relations feature, with the orientation of the body’s principal

irection being subtracted, to represent horizontal and vertical dis-

ance relations after fixing the orientation. Furthermore, to find the

ost discriminative orientation of each joint, we apply principal

omponent analysis (PCA) to the positions of each joint. Thus, we

btain the position of each joint in the eigenvector direction. After

alculating the distance between these positions, the distance rela-

ions in the direction of the eigenvector are obtained. In addition,

o describe the link distance relation between pairs of joints in the

bservation plane, we calculate the sum of the distances of adja-

ent joints between each pair of joints. These features compose our

istance relational features. 
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Fourth, for each triplet of joints, to extend the angular infor-

mation, we calculate the inner product and the cosine similarity

between the vectors of joints in each joint triplet to construct fea-

tures. The construction of the joint vector inner product feature is

inspired by the nature of the horizontal (vertical) distance relation

feature, which is essentially the inner product between the hori-

zontal (vertical) unit vector and a vector from one joint to another.

In addition, the purpose of designing the joint vector cosine sim-

ilarity feature is to describe orientational correlation relations be-

tween vectors in each joint triplet. Moreover, most triplets of joints

form triangles. To describe the geometric information, the area and

the perimeter are usually used. However, these two kinds of fea-

tures are not robust with respect to the viewpoint. Accordingly, we

use the ratio of the area and the perimeter as features to present

geometric information. Our geometric relational features consist of

these three features. 

Finally, to utilize temporal information [2,8] , we further calcu-

late the trajectories of the distance relational features and geomet-

ric relational features. 

In summary, to tackle the problems that exist in HLPF [1] , we

propose the joints kinetic and relational features (JKRF). Specifi-

cally, to describe the motion information of each joint, we pro-

pose the kinetic features. The correlation relational features are de-

signed to describe the kinetic correlation between pairs of joints.

Considering that the discriminative power of distance relations and

orientation relations is not strong enough, we propose the distance

relational features. Using the method of finding the inner product

and adding geometrical information, the geometric relational fea-

tures are constructed. We conduct experiments on three challeng-

ing datasets: JHMDB [1] , sub-JHMDB [1] and Penn Action dataset

[10] . JKRF outperform state-of-the-art action recognition methods

on these three datasets. 

2. Related works 

Action recognition is a popular topic in computer vision, and

there are a number of studies related to this topic. In this sec-

tion, we introduce some related works conducted in recent years.

In general, the methods used for action recognition can be grouped

into three categories: pose-based methods, hand-craft methods

and deep-learned methods. 

Pose-based methods Pose estimation and pose-based descrip-

tion are two main classes of these methods. Yang et al. [5] used the

flexible mixtures-of-parts model to estimate joint positions. Hong

et al. [11] used nonlinear mapping with a multilayer deep neural

network to recover a pose. Hong et al. [12] used multiview locality-

sensitive sparse retrieval to recover a three-dimensional human

pose. Lu et al. [13] proposed a hierarchical MRF model for hu-

man action segmentation. Yao et al. [14] proved that actions could

be recognized reliably from multiple camera views when using

pose estimation. Singh et al. [7] demonstrated that estimated poses

were reliable for the action recognition task using relatively sim-

ple datasets composed of monocular videos. Nie et al. [15] com-

bined action recognition and pose estimation in a unified frame-

work with a spatial-temporal and-or graph model. To study the

influence of the pose estimation error and the effectiveness of

the pose-based features on the performance of action recognition,

Jhuang et al. [1] constructed two challenging datasets: the JHMDB,

in which all the joints are annotated as shown in Fig. 2 (a) and (b),

and the sub-JHMDB [1] , which is a subset of the JHMDB. In addi-

tion, they proposed the HLPF [1] , which achieved excellent perfor-

mance on the two datasets when using annotated joint positions.

Cheron et al. [16] also used annotated joint positions and designed

pose-based CNN (P-CNN) features. This method performed better

than the improved dense trajectory features [2] encoded using the

Fisher vector [17] . 
Hand-craft methods In these methods, interest point detection

nd feature description are two indispensable procedures for ac-

ion recognition. The space time interest points [18–20] or dense

ampling points [2,8] in a video are detected first. Then, the de-

criptors [2,8,9,21,22] are computed at these key points or along

he trajectory of the dense sampled points. After the descriptors

r features are extracted using feature mining approaches [23,24] ,

he video representation [4,17,25,26] is built. Finally, a proper dis-

ance metric [27–30] is learned, and the support vector machines

re trained to be classifiers [31,32] . 

Deep-learned methods Inspired by the success of deep learn-

ng techniques in image classification [33–36] , much effort has

een made to develop deep architectures for video action recog-

ition. To describe both appearance and motion information, Si-

onyan et al. [37] designed a two-stream CNN. Ji et al. [38] ex-

ended the 2D CNN to videos. Karpathy et al. [39] tested the CNN

ith deep structures. By using dense trajectory points to pool 2D

NN feature maps, Wang et al. [40] constructed trajectory-pooled

eep convolutional descriptors. 

In this work, we use pose-based methods to construct a set of

KRF. JKRF solve the problems present in [1] , which is closely re-

ated to our work, and our features achieve consistent improve-

ent over state-of-the-art methods on three challenging datasets. 

. High-Level Pose Features (HLPF) 

In this section, we briefly introduce HLPF [1] , which are used

s a baseline in our algorithm. HLPF consist of 9 features, which

an be grouped into 3 categories according to the number of joints

nvolved in the process of feature design. Both HLPF and JKRF can

e extracted from an arbitrary skeleton. In this paper, we describe

hese features for a skeleton with 15 joints, for which the x and y

oordinates are annotated as shown in Fig. 2 (b). 

For each single joint, the position is first normalized with re-

pect to the human scale. The scale normalization process will

e introduced in detail in Section 5.1 . Then, the position of each

oint with respect to the center of the human body is computed to

orm the normalized positions feature . It uses the translation of

he joint position along the x and y coordinates (x t 2 − x t 1 , y t 2 − y t 1 ) ,

alled the Cartesian trajectory feature , as shown in Fig. 2 (f). In

ddition, the translation of the orientation arctan ( 
y t 2 

−y t 1 
x t 2 

−x t 1 
) is com-

uted as the radial trajectory feature . 

For each pair of joints, the distance relation feature is obtained

y calculating the Euclidean distance between the joints. Fig. 2 (c)

hows the distance relation between joint J i and other joints. The

rientation relation feature is obtained by calculating the orien-

ation of the vector connecting each pair of joints. Notice that the

rientation is normalized by subtracting the orientation from the

elly to the neck, which can be regarded as the principal direction

f a person. For example, as shown in Fig. 2 (d), the orientation

rom J i to J j is ∠ b − ∠ a . The trajectories of these two features are

alculated as the corresponding trajectory features. 

For each triplet of joints, the angle relation feature is con-

tructed by calculating the inner angles that span the vectors con-

ecting this joint triplet. For instance, the angle relation among

oints J i , J j and J k in Fig. 2 (e) is obtained by calculating � J i J j J k ,

 J j J i J k and � J i J k J j , respectively. The trajectories of this feature are

hen extracted as its trajectory feature. 

In general, the trajectory features are considered as the dif-

erences between spatial features along the trajectory at frame t

nd frame t + k, i.e., the feature of dimension f is a sequence

( f t+ s − f t , · · · , f t+ ks − f t+(k −1) s ) , where k is the trajectory length

nd s is the step size. Fig. 2 (f) shows the trajectories of each joint

or k = 4 and s = 1 . We use k = 2 and s = 3 in this paper, which

re the same as the settings used in [1] . 
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(a) A video frame (b) Joints and skeleton (c) Distance relation

(d) Orientation (cosine/sine) relation (e) Angle (geometric) relation (f) Trajectories of joints

(g) Velocity of joints (h) Horizontal (vertical) distance relation (i) Link distance relation

(a) A video frame (b) Joints and skeleton (c) Distance relation

(d) Orientation (cosine/sine) relation (e) Angle (geometric) relation (f) Trajectories of joints

(g) Velocity of joints (h) Horizontal (vertical) distance relation (i) Link distance relation

Fig. 2. Overview of the construction of some features in HLPF and JKRF. (a) A video frame from JHMDB. (b) Annotated joints and skeleton. (c) Distance relation between 

one joint and other joints. (d) Orientation (cosine/sine) relation and the principal direction. (e) Angle (geometric) relation. (f) Trajectories of joints. (g) Velocity of joints. (h) 

Horizontal (vertical) distance relation. (i) Link distance relation. 

 

o  

t  

k  

h  

M

4

 

t

4

 

p  

t  

t

 

w  

a

V  

H  

m

 

e

A  

 

s

S

 

t

A  

 

t  

s  

t

D  

 

v

A

 

t  

a

A

 

w  

K  
HLPF consist of these nine kinds of features. The dimensionality

f HLPF is 30 + 60 + 30 + 6 × C 2 15 + 3 × 3 × C 3 
15 

= 4845 . For each of

hese nine kinds of features in HLPF, a codebook is generated using

 -means for quantization. After each video clip is described by a

istogram, the SVM with an RBF- χ2 kernel is used as the classifier.

ore details can be found in [1] . 

. Joints Kinetic and Relational Features (JKRF) 

JKRF consist of 36 kinds of features. In this section, we will in-

roduce these features in detail. 

.1. Kinetic features 

To capture the motion information of each single joint, we pro-

ose a set of kinetic features. Notice that we only describe the ac-

ions in videos and that the following features are independent of

he physical features of the subject performing the action. 

The velocity describes the change in the position of each joint

ith time, as shown in Fig. 2 (g). For joint J i , the position of which

t frame t is ( x i,t , y i,t ), its velocity ( V ) is: 

 (i, t) = (x i,t+ k − x i,t , y i,t+ k − y i,t ) . (1)

ereafter, we use the setting k = 3 , which yields the best perfor-

ance. 

The acceleration describes the change rate of the position of

ach joint with time. The acceleration ( A ) of joint J i at frame t is: 

 (i, t) = V (i, t + k ) − V (i, t) . (2)
The speed describes the magnitude of the velocity. The

peed ( S ) of joint J i at frame t is: 

(i, t) = 

√ 

V (i, t) 2 x + V (i, t) 2 y . (3) 

The acceleration rate describes the magnitude of the accelera-

ion. The acceleration rate ( ACCR ) of joint J i at frame t is: 

C C R (i, t) = 

√ 

A (i, t) 2 x + A (i, t) 2 y . (4)

Because the human skeleton can be regarded as a tree struc-

ure, to describe the rotation velocity of the child joint with re-

pect to its father joint, we design the angular velocity . The dis-

ance between joints J i and J j at frame t is: 

ST (i, j, t) = 

√ 

(x i,t − x j,t ) 2 + (y i,t − y j,t ) 2 . (5)

Suppose that the father joint of joint J i is J f ; then, the angular

elocity ( AV ) of joint J i at frame t is: 

V (i, t) = 

V (i, t) 

DST (i, f, t) 
. (6) 

The angular acceleration describes the rotation acceleration of

he child joint with respect to its father joint. The angular acceler-

tion ( AA ) of joint J i at frame t is: 

A (i, t) = 

A (i, t) 

DST (i, f, t) 
. (7) 

The kinetic energy describes the kinetic energy of the joint

ith unit mass. The kinetic energy ( KE ) of joint J i at frame t is:

E(i, t) = 

1 

(V (i, t) 2 x + V (i, t) 2 y ) . (8)

2 
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The kinetic energy change describes the change in the kinetic

energy with time. The kinetic energy change ( KEC ) of joint J i at

frame t is: 

KEC(i, t) = KE(i, t + k ) − KE(i, t) . (9)

The potential energy describes the gravitational potential en-

ergy of the joint with unit mass. The potential energy ( PE ) of joint

J i at frame t is: 

P E(i, t) = g · y i,t . (10)

Here, g = 10 . 

The potential energy change describes the change in the po-

tential energy with time. The potential energy change ( PEC ) of joint

J i at frame t is: 

P EC(i, t) = P E(i, t + k ) − P E(i, t) . (11)

The total energy describes the sum of the kinetic energy and

the potential energy of the joint with unit mass. The total en-

ergy ( TE ) of joint J i at frame t is: 

T E(i, t) = KE(i, t) + P E(i, t) . (12)

The total energy change describes the change in the total en-

ergy with time. The total energy change ( TEC ) of joint J i at frame t

is: 

T EC(i, t) = T E(i, t + k ) − T E(i, t) . (13)

In addition, we use the normalized positions feature ( NP ) in

HLPF [1] to add position information. 

For each of the 15 joints, we extract the 2-dimensional

normalized positions feature, 2-dimensional velocity feature, 2-

dimensional acceleration feature, 2-dimensional angular velocity

feature and 2-dimensional angular acceleration feature. For the re-

maining 8 features (speed feature, acceleration feature, kinetic en-

ergy feature, kinetic energy change feature, potential energy fea-

ture, potential energy change feature, total energy feature and to-

tal energy change feature), the dimensionality is one. Therefore,

for each joint, the total dimensionally of the kinetic feature is

2 × 5 + 8 = 18 . There are 15 joints in total. Therefore, the final di-

mensionality of the kinetic feature for each frame is 18 × 15 = 270 .

4.2. Correlation relational features 

For each pair of joints, we propose a set of correlation relational

features to describe their kinetic correlation relations. 

4.2.1. Motion correlation relational features 

To describe the correlation of the motion between each pair of

joints, we compute the cosine similarity of the motion feature pair.

The positions of the pair of joints { J i , J j } at frame t are ( x i , y i ) and

( x j , y j ), their velocities are V i and V j , their accelerations are A i and

A j , their angular velocities are AV i and AV j , and their angular ac-

celerations are AA i and AA j , respectively. The velocity correlation

relation ( VCR ) is: 

 CR (i, j) = 

V i · V j 

‖ V i ‖ · ‖ V j ‖ 

. (14)

The acceleration correlation relation ( ACR ) is: 

ACR (i, j) = 

A i · A j 

‖ A i ‖ · ‖ A j ‖ 

. (15)

The angular velocity correlation relation ( AVCR ) is: 

AV CR (i, j) = 

AV i · AV j 

‖ AV i ‖ · ‖ AV j ‖ 

. (16)

The angular acceleration correlation relation ( AACR ) is: 

AACR (i, j) = 

AA i · AA j 
. (17)
‖ AA i ‖ · ‖ AA j ‖ 

O

.2.2. Energy correlation relational feature 

The energy flow is designed to describe the correlation of the

nergy between each pair of joints. The energy flow describes the

nergy transformation from one joint to another. The velocity of

oint J i with respect to J j at frame t is: 

 (i, j) = V i − V j . (18)

he relative displacement of J i to J j per unit time is: 

(i, j) = 1 · V (i, j) = V (i, j) . (19)

he relative acceleration of J i to J j is: 

 (i, j) = A i − A j . (20)

he net force of J i to J j per unit mass is: 

 (i, j) = 1 · A (i, j) = A (i, j) . (21)

hus, the energy flow ( EF ) from J i to J j is: 

F (i, j) = F (i, j) S(i, j) = A (i, j) V (i, j) . (22)

For a human skeleton with 15 joints, there are C 2 15 = 105 joint

airs. For each joint pair, we can extract 5-dimensional features

i.e., velocity correlation relation feature, acceleration correlation

elation feature, angular velocity correlation relation feature, an-

ular acceleration correlation relation feature and energy flow fea-

ure.). Therefore, the total dimensionality of the correlation rela-

ional features for each frame is 105 × 5 = 525 . 

.3. Distance relational features 

For each pair of joints, we propose a set of distance relational

eatures to describe position relations in space. 

.3.1. Horizontal and vertical distance relations 

The horizontal and vertical distance relations describe the

elative positions in the horizontal and vertical directions. They are

btained by computing the differences between the x and y coor-

inates for each pair of joints, as shown in Fig. 2 (h). In detail, sup-

ose that the positions of the pair of joints { J i , J j } at frame t are ( x i ,

 i ) and ( x j , y j ); then, the horizontal distance relation ( HDR ) from J i
o J j is: 

DR (i, j) = x j − x i . (23)

he vertical distance relation ( VDR ) from J i to J j is: 

 DR (i, j) = y j − y i . (24)

.3.2. Orientation sine and cosine distance relations 

The orientation sine and cosine distance relations describe

he horizontal and vertical positions with respect to the principal

irection. They are obtained by first computing the orientation of

he vector connecting each pair of joints relative to the principal

irection and then calculating the sine and cosine values of this

rientation, as shown in Fig. 2 (d). The orientation from J i to J j is:

RT (i, j) = arctan 

(
y j − y i 

x j − x i 

)
. (25)

he orientation with respect to the principal direction is: 

ORT (i, j) = ORT (i, j) − ORT (neck, bel l y ) . (26)

he orientation sine distance relation ( OSR ) from J i to J j is: 

SR (i, j) = sin ( RORT (i, j) ) . (27)

he orientation cosine distance relation ( OCR ) from J i to J j is: 
CR (i, j) = cos ( RORT (i, j) ) . (28) 
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.3.3. Eigenvector direction distance relation 

To find the most discriminate direction to recognize actions, us-

ng the whole dataset, we apply PCA to the two-dimensional po-

itions of each joint to reduce the dimensionality to one. This is

lso the projected position of the joint with respect to the direc-

ion with the max eigenvalue. Notice that this process is conducted

eparately for each joint. In other words, we repeat the PCA 15

imes in total. Thus, we obtain new positions of each joint in the

ne-dimensional coordinate system. Then, distances are calculated

etween each pair of joints to form the eigenvector direction dis-

ance relation . In detail, suppose that the positions of the pair of

oints { J i , J j } at frame t are z i and z j in each eigenvector direction.

hen, the eigenvector direction distance relation ( EVDR ) is: 

V DR (i, j) = z j − z i . (29)

.3.4. Link distance relation 

Since the human skeleton is a tree structure, a path from one

oint to another with no repetition exists and is unique. The reason

ehind this conclusion is that, treating the head as the root node

nd the others as the child nodes, a path from the ancestor joint to

he descendant joint exists and is unique. By calculating the lowest

ommon ancestor joint, we can obtain the link distance relation

y summing the distances between each adjacent joint from the

wo descendant joints to the ancestor joint, as shown in Fig. 2 (i).

n detail, suppose that the lowest common ancestor of J i and J j is

 a and that the father of J k is J f ( k ) . Thus, the distance between J i and

 j is: 

ST (i, j) = 

√ 

(x i − x j ) 2 + (y i − y j ) 2 . (30)

he link distance relation ( LDR ) from J i to J j is: 

DR (i, j) = 

a ∑ 

k = i 
DST (k, f (k )) + 

a ∑ 

k = j 
DST (k, f (k )) . (31)

.3.5. Distance relational trajectory features 

To add temporal information, we use the method introduced in

ection 3 to calculate the trajectories of the distance relational fea-

ures. The parameters of the trajectory features are the same as

hose used for HLPF [1] . The trajectory length is 2, and the step

ize is 3. Furthermore, we add the letter ‘T’ to the name of a fea-

ure to represent the corresponding trajectory feature in later sec-

ions. 

For a human skeleton with 15 joints, we can extract C 2 15 = 105 -

imensional features for the horizontal distance relation feature,

ertical distance relation feature, orientation sine distance relation

eature, orientation cosine distance relation feature, eigenvector di-

ection distance relation feature and link distance relation feature.

imilarly, we can extract C 2 
15 

= 210 -dimensional features for the

orizontal distance relation trajectory feature, vertical distance re-

ation trajectory feature, orientation sine distance relation trajec-

ory feature, orientation cosine distance relation trajectory feature,

igenvector direction distance relation trajectory feature and link

istance relation trajectory feature. Therefore, the total dimension-

lity of the distance relational features is 105 × 6 + 210 × 6 = 1890 .

.4. Geometric relational features 

For each triplet of joints, we propose a set of geometric rela-

ional features to describe the spatial position relations. 

.4.1. Joint vector inner product 

From the perspective of the joint vector inner product space, we

onstruct the joint vector inner product by computing the inner

roduct of a pair of vectors, as shown in Fig. 2 (e). At frame t , let

 x i , y i ), ( x j , y j ), and ( x k , y k ) denote the positions of the joints { J i ,
 j , and J k } in a triplet of joints, respectively. The joint vector inner

roduct ( JVIP ) from J i to J j and J k is calculated as: 

V IP (i, j, k ) = 

−→ 

J i J j ·
−→ 

J i J k = (x j − x i )(x k − x i ) + (y j − y i )(y k − y i ) . 

(32) 

.4.2. Joint vector cosine similarity 

To describe the correlation of the joint vectors in each joint

riplet, we calculate the cosine similarity to construct the joint

ector cosine similarity , as shown in Fig. 2 (e). The joint vector

osine similarity ( JVCS ) from J i to J j and J k is calculated as: 

V CS(i, j, k ) = 

JV IP (i, j, k ) 

DST (i, j) DST (i, k ) 
. (33)

.4.3. Joint triangle area perimeter rate 

We design the joint triangle area perimeter rate using the ra-

io of the area to the perimeter of the triangle spanned by the

riplet, as shown in Fig. 2 (e). Let DST (i, j) = D i, j ; then, the perime-

er of triangle J i J j J k is: 

 ER (i, j, k ) = D i, j + D i,k + D j,k . (34)

et C = 

PER (i, j,k ) 
2 ; then, the area of the triangle J i J j J k is: 

R (i, j, k ) = 

√ 

C(C − D i, j )(C − D i,k )(C − D j,k ) (35)

he joint triangle area perimeter rate ( APR ) of the triplet { J i , J j , J k }

s: 

P R (i, j, k ) = 

AR (i, j, k ) 

P ER (i, j, k ) 
. (36)

.4.4. Geometric relational trajectory features 

To add temporal information, we use the method introduced

n Section 3 to calculate the trajectories of the geometric relational

eatures. 

For a human skeleton with 15 joints, we can extract a C 3 
15 

× 3 =
365 -dimensional feature for the joint vector inner product fea-

ure and joint vector cosine similarity feature. We can extract a

 

3 
15 

= 455 -dimensional feature for the joint triangle area perimeter

ate feature and extract a C 3 
15 

× 3 × 2 = 2730 -dimensional feature

or the joint vector inner product trajectory feature and joint vector

osine similarity trajectory feature. We can extract C 3 
15 

× 2 = 910 -

imensional feature for the joint triangle area perimeter rate tra-

ectory feature. The total dimensionality of the geometric relational

eatures is 1365 × 2 + 455 + 2730 × 2 + 910 = 9555 . 

.5. Joints kinetic and relational features 

We combine all of these features together to produce the JKRF.

or a human skeleton with 15 joints, the total dimensionality

f the JKRF is 12240, including 270-dimensional kinetic features,

25-dimensional correlation relational features, 1890-dimensional 

istance relational features and 9555-dimensional geometric rela-

ional features. 

. Experiments 

In this section, we introduce the settings used in our experi-

ents and show the experimental results of our novel features. 

.1. Experimental settings 

We conduct experiments on the JHMDB [1] , sub-JHMDB [1] and

enn Action datasets [10] . 

The JHMDB contains 21 human actions: brush hair, catch, clap,

limb stairs, golf, jump, kick ball, pick, pour, pull-up, push, run, shoot
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Fig. 3. Framework of bag of features using JKRF. 
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ball, shoot bow, shoot gun, sit, stand, swing baseball, throw, walk and

wave . Video clips are restricted to the duration of the action. There

are 36 − 55 clips per action class, with each clip containing 15 − 40

frames of size 320 × 240. 15 body joints and the scale of the per-

son are annotated in each frame. Consequently, there are 928 clips

with 31838 annotated frames in total. 15 joints, including shoulders,

elbows, wrists, hips, knees, ankles, neck, face and belly , are all anno-

tated manually, no matter whether the joints are inside the frame.

There are three training and testing splits for the JHMDB and the

sub-JHMDB, with 70% of clips for training and 30% for testing. The

performance reported here is the average of these three splits. 

The sub-JHMDB is a subset of the JHMDB and consists of 316

clips distributed over 12 actions: catch, climb stairs, golf, jump, kick

ball, pick, pull-up, push, run, shoot ball, swing baseball and walk . The

main difference between the sub-JHMDB and the JHMDB is that

the human body is fully visible in the sub-JHMDB. 

The Penn Action dataset contains 15 human actions: baseball

pitch, baseball swing, bench press, bowl, clean and jerk, golf swing,

jump rope, jumping jacks, pull-up, push-up, sit-up, squat, strum gui-

tar, tennis forehand and tennis serve . There are 82 − 231 clips per

action class, with each clip containing 18 − 663 frames of size

640 × 480. 13 body joints are annotated in each frame. As a re-

sult, there are 2326 clips, in which not all the body joints are visi-

ble, with 163841 annotated frames in total. Compared with the JH-

MDB, the scale of the person and the positions of the neck and the

belly are not annotated. Since our algorithm needs such informa-

tion, we use the midpoint of the left shoulder and the right shoul-

der as the position of the neck and use the midpoint of the left

hip and the right hip as the position of the belly . In addition, we

use 1 
100 Euclid _ distance (pos _ img(neck ) , pos _ img(bel l y )) as the scale

of the person. There is one training and testing split, with 50% of

clips for training and 50% for testing, provided by [10] for the Penn

Action dataset. 

The performance is evaluated by computing the average accu-

racy over all classes for these three datasets. 

After all the joints are extracted, we use the same method used

in constructing the HLPF [1] to normalize the joint positions with

respect to the scale of the person: 

pos _ world _ x ( joint) = 

(
pos _ img _ x ( joint) 

f rame _ width 

− 0 . 5 

)

× f rame _ width 

f rame _ height × scale 
. (37)

pos _ world _ y ( joint) = 

(
pos _ img _ y ( joint) 

f rame _ height 
− 0 . 5 

)
× 1 

scale 
. (38)

Then, we use the normalized joint positions to extract features.

L 2 normalization is used to normalize relational features because

of their high dimensionality and large range of variation. A code-

book is generated separately for each feature using K -means. We

set the number of visual words per feature to K = 20 for the JH-

MDB and K = 30 for the sub-JHMDB and the Penn Action datasets.
rame features are assigned to their closest codeword to obtain the

ode coefficients; then, sum pooling operations are used to gener-

te histograms to represent each video. For classification, we use

he SVM with an RBF- χ2 kernel [32] , which is a multichannel clas-

ifier. It uses all kinds of histograms as inputs in parallel. In detail,

or each feature f , a distance matrix D f is computed. It contains the

2 -distance between the histograms (h 
f 
i 
, h 

f 
j 
) of all video pairs ( v i ,

 j ). Using μf to denote the mean of the distance matrix D f and n

o denote the number of features, the kernel matrix is as follows:

(v i , v j ) = exp 

( 

−1 

n 

∑ 

f 

D f (h 

f 
i 
, h 

f 
j 
) 

μ f 

) 

. (39)

The framework of our algorithm is shown in Fig. 3 . Here, n = 36

ecause there are 36 kinds of sub-features in JKRF. 

.2. Performances of JKRF and HLPF for various codebook (K-means) 

izes 

We test the performances of JKRF and HLPF for various code-

ook (K-means) sizes. As shown in Fig. 4 , the variation trends of

he performances of JKRF and HLPF are the same, and the JKRF per-

orm better than the HLPF consistently for all codebook sizes on all

atasets. In addition, the codebook size has little influence on the

erformance of JKRF. We choose the codebook size with the best

erformance to perform our experiments. Thus, we empirically set

 = 20 for the JHMDB and K = 30 for the sub-JHMDB and the Penn

ction dataset in the following experiments. 

.3. Comparison of the results of JKRF and HLPF for different 

lassifiers 

We compare the performances of JKRF and HLPF for different

lassifiers, including K -nearest neighbor, gradient boosting trees,

oftmax regression, random forest, SVM with a linear kernel, SVM

ith an RBF kernel, and SVM with an RBF- χ2 kernel. For all clas-

ifiers except SVM with an RBF- χ2 kernel, we concatenate his-

ograms of different features into a long vector to be used as in-

uts. As shown in Fig. 5 , for all classifiers on all datasets, except

 -nearest neighbor on the Penn Action dataset, JKRF perform bet-

er than HLPF. For JKRF and HLPF on all datasets, the SVM with

n RBF- χ2 kernel is the best classifier. Therefore, we use the SVM

ith an RBF- χ2 kernel as the classifier. 

.4. Performances of each JKRF feature 

Fig. 6 compares the performances of the kinetic features ( KF ),

orrelation relational features ( CRF ), distance relational features

 DRF ) and geometric relational features ( GRF ) for both the single

eatures and their combinations using the JHMDB, sub-JHMDB and

enn Action datasets. 
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(a) JHMDB (b) Sub-JHMDB (c) Penn Action dataset

Fig. 4. Performances of JKRF and HLPF for various codebook (K-means) sizes on the JHMDB, sub-JHMDB and Penn Action datasets. 

(a) JHMDB (b) Sub-JHMDB (c) Penn Action dataset

Fig. 5. Comparison of the results of JKRF and HLPF for different classifiers on the JHMDB, sub-JHMDB and Penn Action datasets. 
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For the JHMDB and sub-JHMDB, we can observe that the orig-

nal features consistently outperform the trajectory features with

espect to the DRF and GRF by a significant margin ( HDR > HDRT,

DR > VDRT, OCR > OCRT, OSR > OSRT, EVDR > EVDRT, LDR > LDRT,

VIP > JVIPT, JVCS > JVCST and APR > APRT ). However, for the Penn

ction dataset, we obtain the opposite conclusion. This result oc-

urs because the shot is movable in the JHMDB and sub-JHMDB.

hus, some errors are introduced in the construction of the trajec-

ory features. The original features are more effective in this situ-

tion. For the Penn Action dataset, the shot is fixed. The trajectory

eatures carry more discriminative information. 

Moreover, since V, A and AA can be considered as the trajecto-

ies of NP, V and AV with a trajectory length = 1 , respectively, and

orrelation relational features describe the correlation relations of

inetic features, we can draw the same conclusions for KF and CRF .

or the JHMDB and sub-JHMDB, Fig. 6 shows that NP > V, V > A,

V > AA, VCR > ACR and AVCR > AACR . For the Penn Action dataset,

e can draw the same conclusions for KE and CRF , except that

 > NP . In other words, the original features are more effective than

eatures which describe trajectory information for KF and CRF on

ll datasets. This result shows that an unfixed shot influences only

he performances of DRF and GRF . Regarding energy features, e.g.,

E, KEC, PE, PEC, TE and TEC , the energy change features can also

e considered as the trajectory features of the corresponding en-

rgy features. However, only the performances of KE and KEC result

n the energy feature performing better. A possible explanation for

his conclusion is that the main direction of the action of a human

s along the vertical direction and that the vertical position change

f the human body is more important. We can also see that the

erformances of KE and KEC for the Penn Action dataset are less

han 10%. This result may occur because the information of the

quare of the first-order difference is not discriminative enough for

he shot-fixed dataset. 

The common conclusion we can draw from these results is that

or all kinds of features, the combinational features, e.g., KF, CRF,
 d
RF and GRF , have significantly improved performances compared

o that of a single feature. In detail, the performance of KF is

0 . 5% − 16 . 9% better than that of the best single feature among

he kinetic features on these datasets. The performance of CRF is

2 . 5% − 21 . 4% better than that of the best single feature among the

orrelation relational features. The performance of DRF is 16 . 2% −
8 . 5% better than that of the best single feature among the dis- 

ance relational features. The performance of GRF is 11 . 1% − 24 . 1%

etter than that of the best single feature among the geometric re-

ational features. In addition, the combination of all these features

JKRF) achieves the best performance. Therefore, we conclude that

ll the features should be used jointly. 

.5. Comparison to HLPF 

Since all the features in HLPF [1] and JKRF are computed from

 single joint, pairs of joints and triplets of joints, respectively, a

omparison of each feature type make sense. In detail, for each sin-

le joint, we compare the combination of the normalized positions

eature, the Cartesian trajectory feature and the radial trajectory

eature in HLPF with the kinetic features in JKRF. For each pair of

oints, we compare the combination of the distance relations fea-

ure, the orientation relations features and their trajectory features

n HLPF with the combination of the correlation relational features

nd the distance relational features in JKRF. For each triplet of

oints, we compare the combination of the angle relations feature

nd its trajectory feature in HLPF with the geometric relational fea-

ures in JKRF. For HLPF, we directly use the publicly available code

o compute features. 

From Tables 1–3 , we can conclude that for each method, ex-

ept single joint features for the Penn Action dataset, our fea-

ures consistently outperform the corresponding features in HLPF

y a significant margin. This result occurs because we have

ined the motion information more sufficiently and our features

escribe the relations of joints more comprehensively. 
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(a) JHMDB

(b) Sub-JHMDB

(c) Penn Action dataset

Fig. 6. Performance of each single feature and each combinational feature in JKRF for the JHMDB, sub-JHMDB, and Penn Action datasets. 

Table 1 

Classification accuracy (%) comparison of different fea- 

tures between HLPF and JKRF for the JHMDB. 

Methods HLPF JKRF Gain 

Single joint features 61.8 66.7 + 4.9 

Pairwise joints features 67.8 77.0 + 9.2 

Triplet joints features 57.9 72.5 + 14.6 

Combinational features 75.4 81.0 + 5.6 

Table 2 

Classification accuracy (%) comparison of different 

features between HLPF and JKRF for the sub-JHMDB. 

Methods HLPF JKRF Gain 

Single joint features 70.0 75.3 + 5.3 

Pairwise joints features 74.1 82.3 + 8.2 

Triplet joints features 73.9 77.9 + 6.0 

Combinational features 78.8 86.0 + 7.2 
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(a) JHMDB

(b) Sub-JHMDB

(c) Penn Action dataset

Fig. 7. Class accuracy of each action on the JHMDB, sub-JHMDB and Penn Action dataset for JKRF and HLPF. Numbers correspond to the accuracy difference between JKRF 

and HLPF (positive numbers indicate that JKRF perform better). 

Table 3 

Classification accuracy (%) comparison of different features 

between HLPF and JKRF for the Penn Action dataset. 

Methods HLPF JKRF Gain 

Single joint features 89.1 84.6 -4.5 

Pairwise joints features 90.5 96.1 + 5.6 

Triplet joints features 90.7 93.4 + 2.7 

Combinational features 94.7 96.1 + 1.4 

 

F  

o  

w

5

 

F  
In addition, a quantitative comparison per class is presented in

ig. 7 . It can be concluded that JKRF achieve large improvements

ver HLPF for actions that are difficult to distinguish, such as run,

alk, kick ball, jump and climb stairs . 

.6. Comparison to state-of-the-art methods 

HLPF [1] , improved dense trajectory features [2] encoded using

isher vectors [25] (iDT-FV), P-CNN [16] , spatio-temporal features
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Table 4 

Comparison with state-of-the-art methods for the JHMDB, 

sub-JHMDB and Penn Action datasets. 

Method JHMDB sub-JHMDB Penn Action 

STIP [3] – – 82.9 

DT [8] 56.6 46.6 94.5 

Seg DT [13] 58.6 – 95.0 

iDT [2] -FV [25] 65.9 – –

HLPF [1] 76.0 75.1 94.7 

P-CNN [16] 74.6 72.5 –

JKRF (ours) 81.0 86.0 96.1 
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[3] (STIP), dense trajectory [8] (DT) and segmentation dense tra-

jectory [13] (Seg DT) are state-of-the-art methods for action recog-

nition. The comparison of these methods is shown in Table 4 . For

all methods, we use the results reported in their respective works.

The figure demonstrates that JKRF improve upon the state-of-the-

art methods by 6% for the JHMDB, 10.9% for the sub-JHMDB and

1.1% for the Penn Action dataset. These results reveal that the joints

kinetic and relational features derived from normalized joints po-

sitions are the best features for action recognition. 

6. Conclusions 

In this paper, we propose a set of joints kinetic and relational

features (JKRF). The kinetic features describe the motion informa-

tion of each joint. The correlation relational features and distance

relational features describe the kinetic correlations and the dis-

tance relations between pairs of joints. The geometric relational

features describe the position relations among triplets of joints.

JKRF perform significantly better than the state-of-the-art on three

benchmark datasets. 
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